Chapter 2
Single Layer Feedforward Networks

Perceptrons

* By Rosenblatt (1962)

— For modeling visual perception (retina)
— A feedforward network of three layers of units:
Sensory, Association, and Response

— Learning occurs only on weights from A units to / units
(weights from Sunits to A units are fixed).

— Each R unit receives inputs from n A units

— For a given training sample s:t, change weights between A
and /R only if the computed output y is different from the
target output t (error driven)

@ SA A AR

Perceptrons

A simple perceptron

Structure:

 Sing output node with threshold function

« ninput nodes with weights w;, /1=1—-n

To classify input patterns into one of the two classes
(depending on whether output = 0 or 1)

Example: input patterns: (x;, X,)
« Two groups of input patterns
(0,0)(0,1) (1,0) (-1, -1);
(2.1, 0) (0, -2.5) (1.6, -1.6)
« Can be separated by a line on the (x,, Xx,) plane x, - x, =2
Classification by a perceptron with
w, =1, w, = -1, threshold =2

Perceptrons

>, ml—mgzﬂ

t / iTq h‘i@&— :ﬂg)
/.' “ Lo "":‘.1?'

=1 - L]

LD ©(1.6,-1.6)

/:

Implement threshold 2y = 12
by a node x,, o 114\;@)_)
— Constant output 1 =

— Weight w),= - threshold

— A common practice in
NN design

Perceptrons

Linear separability

A set of (2D) patterns (x;, x,) of two classes is linearly
separable if there exists a line on the (x,, x,) plane

« Wyt WX+ W,x,=0

« Separates all patterns of one class from the other class

A perceptron can be built with

« 3input x,=1, x;, X, with weights w,, w,, w,

ndimensional patterns (x,,..., X,)

« Hyperplane w,+ w, x;+ w,x,+...+ w, x, = 0 dividing
the space into two regions

Can we get the weights from a set of sample patterns?

« If the problem is linearly separable, then YES (by
perceptron learning)

Examples of linearly separable classes

- Logical AND function
patterns (bipolar) decision boundary

0] \

x1 x2 output wl=1

<

0]

-1 -1 -1 w2=1 0
-1 1 -1 w0 = -1
1 -1 -1 X: class
1 1 1 -1+x1+x2=0 o: class

- Logical OR function
patterns (bipolar) decision boundary

N

| (output =1)
Il (output = -1)
—+ X

X1 x2 output wl=1

-1 -1 -1 w2 =1

-1 01 1 wl=1

1 -1 1

1 1 1 1+x1+x2=0

B

X: class | (output =1)
0: class Il (output = -1)

Perceptron Learning

* The network
— Input vector /; (including threshold input = 1) "
— Weight vector w= (W, Wy,..., w,) Net=w-i; = > Wi ;
— Output: bipolar (-1, 1) using the sign node functiork=0
Output:{ L ifw-i;>0
—1 otherwise
 Training samples
— Pairs (/;, class(1)) where class(/) is the correct classification of /;
 Training:
— Update wso that all sample inputs are correctly classified (if
possible)
— If an Input /;Is misclassified by the current w
class(r) - w- ;<0
change wto w+ Awso that (w+ Aw) - /;is closer to class(/;

Perceptron Learning

Perceptron Training Algorithm

Algorithm Perceptron:

Start with a randomly chosen weight vector wy;

Let £k = 1;

while some input vectors remain misclassified, do
Let z; be a misclassified input vector;
Let x, = class(i;).1;, implying that wp_; -z, < 0;
Update the weight vector to w, = w,_; + naxy;
Increment k;

end-while;

Where 1 > 0 Is the learning rate

Perceptron Learning

 Justification

(WH7-%)-1; =(W+n-class(i;) 1)1
=W-i;+n-class(i;)-i; -i;
sincel; -1>0
(W%)i, —w-i;=n-class(i;)-i; -i;
{>O if class(i;) =1
<0 ifclass(i;) =-1

— new net moves toward class(i;)

 Perceptron learning convergence theorem

— Informal: any problem that can be represented by a
perceptron can be learned by the learning rule

— Theorem: If there is aw' such that f (i, -w') =class(i,,)
for all Ptraining sample patterns {i , class(i)}, then for
any start weight vector w®° the perceptron learning rule
will converge to a weight vector w™ such that for all p

f(i,-w)=class(i,)
(w" and w* may not be the same.)
— Proof: reading for grad students (Sec. 2.4)

Perceptron Learning

« Note:
— Itis a supervised learning (c/ass(/) is given for all sample input /)

— Learning occurs only when a sample input misclassified (error
driven)
« Termination criteria: learning stops when all samples are correctly
classified
— Assuming the problem is linearly separable
— Assuming the learning rate (1) 1s sufficiently small
 Choice of learning rate:
— Ifnis too large: existing weights are overtaken by Aw =7 -class (i) -1;
— If n is too small (= 0): very slow to converge
— Common choice: n = 1.
« Non-numeric input:
— Different encoding schema
ex. Color = (red, blue, green, yellow). (0, 0, 1, 0) encodes “green”

Perceptron Learning

* |_earning quality

— Generalization. can a trained perceptron correctly classify
patterns not included In the training samples?
« Common problem for many NN learning models

— Depends on the quality of training samples selected.
— Also to some extent depends on the learning rate and
Initial weights
— How can we know the learning is ok?
» Reserve a few samples for testing

Adaline

« By Widrow and Hoff (~1960)
— Adaptive linear elements for signal processing

— The same architecture of perceptrons

: (j"“"ﬁ& D (wyg +wyz; +...4 w,ﬁ output

(lompare with
desired output

Adjust weights

— Learning method: delta rule (another way of error driven),
also called Widrow-Hoff learning rule
Try to reduce the mean squared error (MSE) between the net
Input and the desired out put

Adaline

e Deltarule
—Let /;=(lyy 115, 1,;) DE an input vector with desired output g
— The squared error
* E=(d;—net;)’ =(d; - Y wi ;)°
+ Its value determined by the weights W,
— Modify weights by gradient descent approach
» OF = 2(d; — 114131;_,_;)3i (-net ;)

3’11[:';; Wi

= —Z(dj — IlEt-j) I—k,j*
« Change weights in the opposite direction of JE/ow,
A, =n(d; =2 Wiy ;)i ; =n(d; —net;) iy ;
I

Adaline Learning Algorithm

Algorithm LMS-Adaline;

Start with a randomly chosen weight vector we;
Let £k = 1;
while MSE is unsatisfactory and
computational bounds are not exceeded, do
Let z be an input vector
(chosen randomly or in some sequence)
for which d is the desired output value;

Update the weight vector to
wp = W1+ 1N(d — wp_q - 2)2

Increment k;

end-while.

Adaline Learning

» Delta rule in batch mode
— Based on mearn squared error over all Zsamples

1P 5
E==>(d,—net))
Pp:]_

 Elisagain a function of w= (w,, w,,..., w,)
» the gradient of £:

o 2 2F %,
= d.—net.)—(d. —net
o~ p 210 —nety) = (d, —net,)]
2 P .
=——2 [(d, —net))-i, ,]
Pp—]_
OF P :
+ Therefore Aw, = —77—— = > [(d,—net)i, ;]

5W| p=1

Adaline Learning

* Notes:

— Weights will be changed even if an input is classified
correctly

— £ monotonically decreases until the system reaches a state
with (local) minimum £ (a small change of any w; will
cause £to increase).

— At a local minimum E state, oE /ow, =0 Vi, but Elis not
guaranteed to be zero (nef; 1= a)

 This is why Adaline uses threshold function rather than
linear function

Linear Separability Again

« Examples of linearly inseparable classes

- Logical XOR (exclusive OR) function X 0
patterns (bipolar) decision boundary | |
X1 X2 output

-1 -1 -1 0 X

-1 1 1

1 -1 1 X: class | (output=1)
1 1 -1 o: class 11 (output = -1)

No line can separate these two classes, as can be seen from the
fact that the following linear inequality system has no solution

-

Wy —W, —W, <0 (1) because we have w,< 0 from
Wy —W,+wW, >0 (2) (1)+&),and w,>=0 from
3 .7
Wy +W,—W, =20 (3) (2)+(@3), whichisa
Wy +W; +W, <0 (4) contradiction

Why hidden units must be non-linear?

« Multi-layer net with linear hidden layers is equivalent to a
single layer net

@
wl threshold = 0

vl

‘ v22 w2

— Because z1 and z2 are linear unit
z1 =al* (x1*v1l + x2*v21) + bl
z1 = a2* (x1*v12 + x2*v22) + b2

— net, =z1*wl + z2*w2
= Xx1*ul + x2*u2 + b1l+b2 where
ul = (al*v1l+ a2*v12)wil, u2 = (al*v21 + a2*v22)*w2
net, Is still a linear combination of x1 and x2.

— XOR can be solved by a more complex network with
hidden units

Threshold = 1

Threshold =0

(-1, -1) (-1, -1) 1
(-1, 1) (-1, 1) 1
(1, -1) (1, -1) 1
(1,1) (-1, -1) 1

summary

Single layer nets have limited representation power
(linear separability problem)

Error driven seems a good way to train a net

Multi-layer nets (or nets with non-linear hidden
units) may overcome linear inseparability problem,
learning methods for such nets are needed

Threshold/step output functions hinders the effort to
develop learning methods for multi-layered nets

