Chapter 2 Single Layer Feedforward Networks

- By Rosenblatt (1962)
 - For modeling visual perception (retina)
 - A feedforward network of three layers of units:
 Sensory, Association, and Response
 - Learning occurs only on weights from A units to R units (weights from S units to A units are fixed).
 - Each **R** unit receives inputs from n **A** units
 - For a given training sample s:t, change weights between A and R only if the computed output y is different from the target output t (error driven)

- A simple perceptron
 - Structure:
 - Sing output node with threshold function
 - *n* input nodes with weights w_i , i = 1 n
 - To classify input patterns into one of the two classes (depending on whether output = 0 or 1)
 - Example: input patterns: (x_1, x_2)
 - Two groups of input patterns

```
(0, 0) (0, 1) (1, 0) (-1, -1);
(2.1, 0) (0, -2.5) (1.6, -1.6)
```

- Can be separated by a line on the (x_1, x_2) plane $x_1 x_2 = 2$
- Classification by a perceptron with $w_1 = 1$, $w_2 = -1$, threshold = 2

- Implement threshold by a node x_0
 - Constant output 1
 - Weight w_0 = threshold
 - A common practice in NN design

- Linear separability
 - A set of (2D) patterns (x_1, x_2) of two classes is linearly separable if there exists a line on the (x_1, x_2) plane
 - $W_0 + W_1 X_1 + W_2 X_2 = 0$
 - Separates all patterns of one class from the other class
 - A perceptron can be built with
 - 3 input $x_0 = 1$, x_1 , x_2 with weights w_0 , w_1 , w_2
 - n dimensional patterns $(x_1, ..., x_n)$
 - Hyperplane $w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n = 0$ dividing the space into two regions
 - Can we get the weights from a set of sample patterns?
 - If the problem is linearly separable, then YES (by perceptron learning)

- Examples of linearly separable classes
 - Logical **AND** function patterns (bipolar) decision boundary

x: class I (output = 1) o: class II (output = -1)

- Logical **OR** function

patterns (bipolar) decision boundary

x1	x2	output	w1 = 1
-1	-1	-1	w2 = 1
-1	1	1	w0 = 1
1	-1	1	
1	1	1	1 + x1 + x2 = 0

x: class I (output = 1) o: class II (output = -1)

- The network
 - Input vector \mathbf{i}_{j} (including threshold input = 1)
 - Weight vector $\mathbf{w} = (w_0, w_1, ..., w_n)$ $net = \mathbf{w} \cdot \mathbf{i}_j = \sum_{i=1}^n w_i \mathbf{i}_{k,j}$
 - Output: bipolar (-1, 1) using the sign node function $^{k=0}$

$$output = \begin{cases} 1 & \text{if } w \cdot i_j > 0 \\ -1 & \text{otherwise} \end{cases}$$

- Training samples
 - Pairs $(i_j, class(i_j))$ where $class(i_j)$ is the correct classification of i_j
- Training:
 - Update w so that all sample inputs are correctly classified (if possible)
 - If an input i_j is misclassified by the current w $class(i_j) \cdot w \cdot i_j < 0$ $change w to w + \Delta w so that (w + \Delta w) \cdot i_j is closer to class(i_j)$

Perceptron Training Algorithm

Algorithm Perceptron:

Start with a randomly chosen weight vector w_0 ;

Let k=1;

while some input vectors remain misclassified, do

Let i_j be a misclassified input vector;

Let $x_k = class(i_j).i_j$, implying that $w_{k-1}.x_k < 0$;

Update the weight vector to $w_k = w_{k-1} + \eta x_k$;

Increment k;

end-while;

Where $\eta > 0$ is the learning rate

Justification

$$(w + \eta \cdot x_k) \cdot i_j = (w + \eta \cdot class(i_j) \cdot i_j) \cdot i_j$$

$$= w \cdot i_j + \eta \cdot class(i_j) \cdot i_j \cdot i_j$$
since $i_j \cdot i > 0$

$$(w + \eta \cdot x_k) \cdot i_j - w \cdot i_j = \eta \cdot class(i_j) \cdot i_j \cdot i_j$$

$$\begin{cases} > 0 & \text{if } class(i_j) = 1 \\ < 0 & \text{if } class(i_j) = -1 \end{cases}$$

 \Rightarrow new *net* moves toward $class(i_i)$

- Perceptron learning convergence theorem
 - Informal: any problem that can be represented by a perceptron can be learned by the learning rule
 - **Theorem**: If there is aw^1 such that $f(i_p \cdot w^1) = class(i_p)$ for all **P** training sample patterns $\{i_p, class(i_p)\}$, then for any start weight vector w^0 , the perceptron learning rule will converge to a weight vector w^* such that for all p $f(i_p \cdot w^*) = class(i_p)$ (w^*) and w^1 may not be the same.)
 - Proof: reading for grad students (Sec. 2.4)

- Note:
 - It is a supervised learning $(class(i_i))$ is given for all sample input i_i)
 - Learning occurs only when a sample input misclassified (error driven)
- Termination criteria: learning stops when all samples are correctly classified
 - Assuming the problem is linearly separable
 - Assuming the learning rate (η) is sufficiently small
- Choice of learning rate:
 - If η is too large: existing weights are overtaken by $\Delta w = \eta \cdot class(i_j) \cdot i_j$
 - If η is too small (\approx 0): very slow to converge
 - Common choice: $\eta = 1$.
- Non-numeric input:
 - Different encoding schema
 ex. Color = (red, blue, green, yellow). (0, 0, 1, 0) encodes "green"

- Learning quality
 - Generalization: can a trained perceptron correctly classify patterns not included in the training samples?
 - Common problem for many NN learning models
 - Depends on the quality of training samples selected.
 - Also to some extent depends on the learning rate and initial weights
 - How can we know the learning is ok?
 - Reserve a few samples for testing

Adaline

- By Widrow and Hoff (~1960)
 - Adaptive linear elements for signal processing
 - The same architecture of perceptrons

Learning method: delta rule (another way of error driven),
 also called Widrow-Hoff learning rule

Try to reduce the mean squared error (MSE) between the net input and the desired out put

Adaline

- Delta rule
 - Let $i_j = (i_{0,j}, i_{1,j}, ..., i_{n,j})$ be an input vector with desired output d_j
 - The squared error
 - $E = (d_j net_j)^2 = (d_j \sum w_l i_{l,j})^2$
 - Its value determined by the weights w_I
 - Modify weights by gradient descent approach

$$\frac{\partial E}{\partial w_k} = 2(d_j - \text{net}_j) \frac{\partial}{\partial w_k} (-\text{net}_j)$$

$$= -2(d_j - \text{net}_j) i_{k,j}.$$

• Change weights in the opposite direction of $\partial E/\partial w_k$

$$\Delta w_k = \eta(d_j - \sum_l w_l i_{l,j}) \cdot i_{k,j} = \eta(d_j - net_j) \cdot i_{k,j}$$

Adaline Learning Algorithm

Algorithm LMS-Adaline;

Start with a randomly chosen weight vector w_0 ;

Let k=1;

while MSE is unsatisfactory and

computational bounds are not exceeded, do

Let i be an input vector

(chosen randomly or in some sequence)

for which d is the desired output value;

Update the weight vector to

$$w_k = w_{k-1} + \eta(d - w_{k-1} \cdot i)i$$

Increment k;

end-while.

Adaline Learning

- Delta rule in batch mode
 - Based on *mean* squared error over all \boldsymbol{P} samples

$$E = \frac{1}{P} \sum_{p=1}^{P} (d_p - net_p)^2$$

- E is again a function of $W = (W_0, W_1, ..., W_n)$
- the gradient of *E*:

$$\frac{\partial E}{\partial w_k} = \frac{2}{P} \sum_{p=1}^{P} [(d_p - net_p) \frac{\partial}{\partial w_k} (d_p - net_p)]$$

$$= -\frac{2}{P} \sum_{p=1}^{P} [(d_p - net_p) \cdot i_{k,p}]$$

• Therefore
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{p=1}^{P} [(d_p - net_p) \cdot i_{k,p}]$$

Adaline Learning

• Notes:

- Weights will be changed even if an input is classified correctly
- -E monotonically decreases until the system reaches a state with (local) minimum E (a small change of any w_i will cause E to increase).
- At a local minimum E state, $\partial E / \partial w_i = 0 \ \forall i$, but E is not guaranteed to be zero $(net_j!=d_j)$
 - This is why Adaline uses threshold function rather than linear function

Linear Separability Again

- Examples of linearly inseparable classes
 - Logical **XOR** (exclusive OR) function x

No line can separate these two classes, as can be seen from the fact that the following linear inequality system has no solution

$$\begin{cases} w_0 - w_1 - w_2 < 0 & \text{(1)} & \text{because we have } w_0 < 0 \text{ from} \\ w_0 - w_1 + w_2 \ge 0 & \text{(2)} & \text{(1)} + \text{(4)}, \text{ and } w_0 >= 0 \text{ from} \\ w_0 + w_1 - w_2 \ge 0 & \text{(3)} & \text{(2)} + \text{(3)}, \text{ which is a} \\ w_0 + w_1 + w_2 < 0 & \text{(4)} & \text{contradiction} \end{cases}$$

Why hidden units must be non-linear?

• Multi-layer net with linear hidden layers is equivalent to a single layer net

Because z1 and z2 are linear unit

$$z1 = a1* (x1*v11 + x2*v21) + b1$$

 $z1 = a2* (x1*v12 + x2*v22) + b2$

$$- net_y = z1*w1 + z2*w2 = x1*u1 + x2*u2 + b1+b2 where u1 = (a1*v11+ a2*v12)w1, u2 = (a1*v21 + a2*v22)*w2 net_v is still a linear combination of x1 and x2.$$

 XOR can be solved by a more complex network with hidden units

Summary

- Single layer nets have limited representation power (linear separability problem)
- Error driven seems a good way to train a net
- Multi-layer nets (or nets with non-linear hidden units) may overcome linear inseparability problem, learning methods for such nets are needed
- Threshold/step output functions hinders the effort to develop learning methods for multi-layered nets