
Chapter 2

Single Layer Feedforward Networks

Perceptrons

• By Rosenblatt (1962)

– For modeling visual perception (retina)

– A feedforward network of three layers of units:

Sensory, Association, and Response

– Learning occurs only on weights from A units to R units

(weights from S units to A units are fixed).

– Each R unit receives inputs from n A units

– For a given training sample s:t, change weights between A

and R only if the computed output y is different from the

target output t (error driven)

S A R
wSA wAR

Perceptrons

• A simple perceptron

– Structure:

• Sing output node with threshold function

• n input nodes with weights wi, i = 1 – n

– To classify input patterns into one of the two classes

(depending on whether output = 0 or 1)

– Example: input patterns: (x1, x2)

• Two groups of input patterns

(0, 0) (0, 1) (1, 0) (-1, -1);

(2.1, 0) (0, -2.5) (1.6, -1.6)

• Can be separated by a line on the (x1, x2) plane x1 - x2 = 2

• Classification by a perceptron with

w1 = 1, w2 = -1, threshold = 2

Perceptrons

• Implement threshold

by a node x0

– Constant output 1

– Weight w0 = - threshold

– A common practice in

NN design

(1.6, -1.6)
(-1, -1)

Perceptrons

• Linear separability

– A set of (2D) patterns (x1, x2) of two classes is linearly

separable if there exists a line on the (x1, x2) plane

• w0 + w1 x1 + w2 x2 = 0

• Separates all patterns of one class from the other class

– A perceptron can be built with

• 3 input x0 = 1, x1, x2 with weights w0, w1, w2

– n dimensional patterns (x1,…, xn)

• Hyperplane w0 + w1 x1 + w2 x2 +…+ wn xn = 0 dividing

the space into two regions

– Can we get the weights from a set of sample patterns?

• If the problem is linearly separable, then YES (by

perceptron learning)

• Examples of linearly separable classes

- Logical AND function

patterns (bipolar) decision boundary

x1 x2 output w1 = 1
-1 -1 -1 w2 = 1
-1 1 -1 w0 = -1
1 -1 -1
1 1 1 -1 + x1 + x2 = 0

- Logical OR function

patterns (bipolar) decision boundary

x1 x2 output w1 = 1
-1 -1 -1 w2 = 1
-1 1 1 w0 = 1
1 -1 1
1 1 1 1 + x1 + x2 = 0

x

oo

o

x: class I (output = 1)
o: class II (output = -1)

x

xo

x

x: class I (output = 1)
o: class II (output = -1)

Perceptron Learning

• The network

– Input vector ij (including threshold input = 1)

– Weight vector w = (w0, w1,…, wn)

– Output: bipolar (-1, 1) using the sign node function

• Training samples

– Pairs (ij , class(ij)) where class(ij) is the correct classification of ij

• Training:

– Update w so that all sample inputs are correctly classified (if
possible)

– If an input ij is misclassified by the current w

class(ij) · w · ij < 0

change w to w + Δw so that (w + Δw) · ij is closer to class(ij)









otherwise1

0if1 jiw
output





n

k
jkkj iwiwnet

0
,

Perceptron Learning

Where η > 0 is the learning rate

• Justification

Perceptron Learning

)(towardmoves new

1)(if0

 1)(if0

)()(

0 since

)(

))(()(

j

j

j

jjjjjk

j

jjjj

jjjjk

iclassnet

iclass

iclass

iiiclassiwixw

ii

iiiclassiw

iiiclasswixw
























• Perceptron learning convergence theorem

– Informal: any problem that can be represented by a

perceptron can be learned by the learning rule

– Theorem: If there is a such that

for all P training sample patterns , then for

any start weight vector , the perceptron learning rule

will converge to a weight vector such that for all p

(and may not be the same.)

– Proof: reading for grad students (Sec. 2.4)

1w)()(1
pp iclasswif 

)}(,{ pp iclassi
0w

*w

)()(*
pp iclasswif 

1w
*w

• Note:

– It is a supervised learning (class(ij) is given for all sample input ij)

– Learning occurs only when a sample input misclassified (error

driven)

• Termination criteria: learning stops when all samples are correctly

classified
– Assuming the problem is linearly separable

– Assuming the learning rate (η) is sufficiently small

• Choice of learning rate:
– If η is too large: existing weights are overtaken by Δw =

– If η is too small (≈ 0): very slow to converge

– Common choice: η = 1.

• Non-numeric input:
– Different encoding schema

ex. Color = (red, blue, green, yellow). (0, 0, 1, 0) encodes “green”

Perceptron Learning

jj iiclass )(

• Learning quality

– Generalization: can a trained perceptron correctly classify

patterns not included in the training samples?

• Common problem for many NN learning models

– Depends on the quality of training samples selected.

– Also to some extent depends on the learning rate and

initial weights

– How can we know the learning is ok?

• Reserve a few samples for testing

Perceptron Learning

Adaline

• By Widrow and Hoff (~1960)

– Adaptive linear elements for signal processing

– The same architecture of perceptrons

– Learning method: delta rule (another way of error driven),

also called Widrow-Hoff learning rule

Try to reduce the mean squared error (MSE) between the net

input and the desired out put

Adaline

• Delta rule

– Let ij = (i0,j, i1,j,…, in,j) be an input vector with desired output dj

– The squared error

•

• Its value determined by the weights wl

– Modify weights by gradient descent approach

•

• Change weights in the opposite direction of

2
,

2)()(
l

jlljjj iwdnetdE

kwE  /

jk
l

jjjkjlljk inetdiiwdw ,,,)()(  

Adaline Learning Algorithm

• Delta rule in batch mode

– Based on mean squared error over all P samples

• E is again a function of w = (w0, w1,…, wn)

• the gradient of E:

• Therefore





P

p
pp netd

P
E

1

2)(
1

])[(
2

)]()[(
2

,
1

1

pk

P

p
pp

pp

P

p k

pp

k

inetd
P

netd
w

netd
Pw

E



























i

i
w

E
w ])[(,

1
pk

P

p
pp inetd 





Adaline Learning

• Notes:

– Weights will be changed even if an input is classified
correctly

– E monotonically decreases until the system reaches a state
with (local) minimum E (a small change of any wi will
cause E to increase).

– At a local minimum E state, , but E is not
guaranteed to be zero (netj != dj)

• This is why Adaline uses threshold function rather than
linear function

iwE i  0/

Adaline Learning

• Examples of linearly inseparable classes

- Logical XOR (exclusive OR) function

patterns (bipolar) decision boundary

x1 x2 output
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

No line can separate these two classes, as can be seen from the
fact that the following linear inequality system has no solution

because we have w0 < 0 from

(1) + (4), and w0 >= 0 from

(2) + (3), which is a

contradiction

o

xo

x

x: class I (output = 1)
o: class II (output = -1)














(4)

(3)

(2)

(1)

 0
 0
 0
 0

210

210

210

210

www
www
www
www

Linear Separability Again

Why hidden units must be non-linear?

• Multi-layer net with linear hidden layers is equivalent to a

single layer net

– Because z1 and z2 are linear unit

z1 = a1* (x1*v11 + x2*v21) + b1

z1 = a2* (x1*v12 + x2*v22) + b2

– nety = z1*w1 + z2*w2

= x1*u1 + x2*u2 + b1+b2 where

u1 = (a1*v11+ a2*v12)w1, u2 = (a1*v21 + a2*v22)*w2

nety is still a linear combination of x1 and x2.

Y

z2

z1x1

x2

w1

w2

v11

v22

v12

v21

threshold = 0

– XOR can be solved by a more complex network with

hidden units

Threshold  1

Y

z2

z1x1

x2

2

2

2

2

-2

-2

(-1, -1) (-1, -1) -1
(-1, 1) (-1, 1) 1
(1, -1) (1, -1) 1
(1, 1) (-1, -1) -1

Threshold  0

Summary

• Single layer nets have limited representation power

(linear separability problem)

• Error driven seems a good way to train a net

• Multi-layer nets (or nets with non-linear hidden

units) may overcome linear inseparability problem,

learning methods for such nets are needed

• Threshold/step output functions hinders the effort to

develop learning methods for multi-layered nets

